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Abstract

Cantilevered flexible plates in axial flow lose stability through flutter. Using the inextensibility condition for the

cantilevered nonlinear plate equation of motion and the unsteady lumped-vortex model to calculate the fluid loads, a

flutter boundary has been obtained. In the time-domain analysis performed to this end, the wake behind the oscillating

cantilevered plate is assumed to issue tangentially from the free trailing edge and extend downstream with an undulating

form. The influence of the wake on system stability may be characterized in terms of the non-dimensional mass ratio,

reduced flow velocity and flutter frequency. For large values of the mass ratio, the plate vibrates with high frequency and

high-order mode content. It is shown that the wake has less influence on system stability for long plates than it does for

short ones.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Cantilevered flexible plates in axial flow lose stability through flutter. A schematic diagram of this
fluid–structure interaction system is shown in Fig. 1. The physical parameters for the rectangular
homogeneous plate are its length L, thickness h ðh5LÞ, material density rP and bending stiffness
D ¼ Eh3=½12ð1� n2Þ�, where E and n are, respectively, Young’s modulus and the Poisson ratio of
the plate material. The plate is clamped at its upstream edge; all other edges are free. An upstream
rigid segment of length L0 is considered for the clamping constraint. The spanwise dimension of
the plate is supposed to be infinite. Therefore, both the plate and the corresponding fluid flow
surrounding the plate are considered to be two-dimensional. The fluid flow, of density rF , passes over
both surfaces of the plate from the clamped upstream edge to the free trailing edge with mean
undisturbed flow velocity U. The plate remains in a static flat state when U is low; any small disturbance
introduced to the system is attenuated. However, when U is sufficiently high and exceeds a critical value Uc,
flutter takes place.

The stability of cantilevered flexible plates in axial flow was first studied by Taneda [1] in 1968. From then
on, extensive research has been conducted on this problem [2–20]; detailed literature reviews may be found in
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Fig. 1. A cantilevered flexible plate in axial flow.
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Refs. [21, Chapter 10; 22]. The current paper is a continuation of the work conducted by Tang and
Paı̈doussis [22]; a nonlinear equation of motion has been utilized, assuming the middle plane of the plate
to be inextensible, together with the unsteady lumped-vortex model [23] for calculating the unsteady
fluid loads. This theoretical model is used to predict the flutter boundary. The flutter boundary thus
obtained is compared with all available experimental data and previous theoretical predictions. It is
found that, when the plate is long, the various available theories are in very good agreement with each
other as well as with measurements from different experiments. In contrast, agreement between the various
theories and with experiments is rather poor for short plates. The present paper aims to correlate these
observations to the influence of the wake beyond the trailing edge of the plate. It is proposed that the wake has
much less influence on the stability of the fluid–structure interaction system for long plates than it does for
short ones.

2. The numerical model

As it has been discussed in detail in the precursor paper [22] to the present one, only a brief account of the
numerical model is presented here. Based on the inextensibility condition and following Semler et al. [24], the
partial differential equation governing plate motion is found to be
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qt
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where, as shown in Fig. 1, W and V are, respectively, the transverse and longitudinal displacements
of the plate; S is the distance of a material point on the plate from the origin, measured along the plate
centreline in a coordinate system embedded in the plate; FL and FD are, respectively, the transverse and
longitudinal fluid loads acting on the plate; a is the material damping coefficient, assuming a Kelvin–Voigt
model [25]. The overdot and the prime, respectively, represent temporal and spatial derivatives, i.e., qð Þ=qt and
qð Þ=qS.

If one is concerned with the flutter boundary only, the plate transverse displacement W can be assumed to
be very small, i.e., W5L, and the plate longitudinal displacement V can consequently be neglected. Moreover,
in this case, the measured S can be regarded as being identical to the coordinate X in the fixed X–Y system.
Using the plate length L as the length scale, the characteristic time of free vibration of the plate in vacuo,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rPhL4=D

q
, as the time scale, and the dynamic pressure, rF U2, as the scale for normalizing fluid loads, Eq. (1)
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may be written in the non-dimensional form
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where the overdot and the prime, from now on, represent qð Þ=qt and qð Þ=qx, respectively; a ¼ a=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q
is

the non-dimensional material damping coefficient. The two main non-dimensional system parameters are the
mass ratio m and reduced flow velocity UR, arising from the fluid–structure interaction; they are defined by

UR ¼ UL

ffiffiffiffiffiffiffiffi
rPh

D

r
(4)

and

m ¼
rF L

rPh
. (5)

As illustrated in Fig. 2, a panel method, in particular the unsteady lumped-vortex model, is used to calculate
the fluid loads acting the plate; a detailed discussion on the implementation of this scheme may be found in

Ref. [22]. Generally speaking, at a given time step k þ 1, the bound vortices Gkþ1
i ði ¼ 1; 2; . . . ;NÞ and the

latest wake vortex Gkþ1
Nþ1 (i.e., G

kþ1
W1

) can be obtained using the panel method, where N is the number of panels.

The fresh wake vortex Gkþ1
W1

is supposed to be born at a location along the tangential prolongation of the last

panel and have a longitudinal clearance of 0:25UDt to the trailing edge of the plate; the strength of Gkþ1
W1

is

determined according to Kelvin’s circulation theorem [26]. Once a wake vortex is in place, it is supposed to
move downstream with the undisturbed flow velocity U for simplicity; the influence on its motion of the bound
vortices and the other wake vortices is neglected. Moreover, no wake dissipation or vortex–vortex interaction
are considered. Therefore, as shown in Fig. 2, an undulating vortex street is formed, and the longitudinal

distance between two successive wake vortices, for example Gk
Nþ1 and Gk�1

Nþ1, is always UDt. When the bound

vortices and the latest wake vortex are available at the current time step, together with previously generated
wake vortices, the pressure difference DP across the plate can be calculated. DP is subsequently decomposed
into the lift F L and the drag F D, which are inserted into the right-hand side of Eq. (1). As illustrated in Fig. 2,

in addition to the inviscid drag obtained from the decomposition of DP, a viscous component of drag rF U2CD

may be incorporated in FD, where CD is the viscous drag coefficient. In the fluid-dynamic calculations,
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Fig. 2. The panel method applied to a cantilevered flexible plate in axial flow.
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all spatial variables are normalized by L and the flow velocity by U; for example, the dimensional truncated
wake length LW and vortex strength G and their corresponding non-dimensional counterparts lW and g are
related by lW ¼ LW=L and g ¼ G=ðULÞ.

The traditional Galerkin method is applied to Eq. (3) by assuming that the plate transverse deformation can
be expanded in terms of generalized coordinates qmðtÞ and the linear in vacuo cantilevered beam eigenfunctions
fmðxÞ [27] as

wðx; tÞ ¼
XM
m¼1

qmðtÞfmðxÞ, (6)

where M is the number of modes utilized in the analysis, leading to the following equation:

f i ¼ €qi þ Aiqi þ aAi _qi þ Bimnlqmqnql þ aBimnlð _qmqnql þ qm _qnql þ qmqn _qlÞ

þ Cimnlqmð _qn _ql þ qn €qlÞ, ð7Þ

where Einstein’s scientific notation has been used, and the range of all indices i, l, m and n is from 1 to M. The
generalized load f i is given by
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Finally, the constant coefficients Ai, Bimnl and Cimnl are:
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where bi is the ith dimensionless eigenvalue of a cantilevered beam [27].
Eq. (7) can be solved using a suitable time integration scheme [22], e.g. the fourth-order Houbolt method.

3. The flutter boundary

The flutter boundary predicted by the present theory is shown in Fig. 3, where the mass ratio is rewritten in
the form m ¼ ½rF=ðrPhÞ�L, and the ordinate URc=m can be interpreted as URc=m ¼ ½ðrPhÞ3=2=ðrF D1=2Þ�Uc.
Therefore, when the physical parameters rP, h, D and rF of the fluid–structure interaction system are fixed, the
URc=m versus m plot actually represents the dependence of the dimensional critical flow velocity Uc on the
plate length L.

In Fig. 3, the flutter boundaries predicted by Huang [8], Guo and Paı̈doussis [10], Yamaguchi et al. [11],
Watanabe et al. [14], Argentina and Mahadevan [17], Shelley et al. [18] and Eloy et al. [20] and the
experimental data published by Kornecki et al. [6], Huang [8], Yamaguchi et al. [12], Watanabe et al. [13],
Tang et al. [15] and Souilliez et al. [19] are also presented. All flutter boundaries in Fig. 3 obtained by various
theories and from experiments exhibit a clear overall trend: Uc decreases with increasing L (excepting a local
rise and subsequent subsidence for the flutter boundary predicted by the present theory within the range
1:0omo1:2, caused by a subtle mode transition [22]).

It can be observed in Fig. 3 that Uc is very sensitive to L when the plate is short (i.e., mo1); while, for long
plates (i.e., m44), Uc varies very gradually with changing L. Another important observation that can be made
in Fig. 3 is that the differences in the flutter boundaries obtained using various theories are quite large for
short plates (mo1). Gradually and monotonically, this difference is diminished as L is increased, and all
theories converge towards one another for long plates (m44). The same phenomenon can also be observed
regarding the agreement between experimental data (excepting those by Watanabe et al. [13]) and theoretical
predictions.
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Table 1

The values of rF=ðrPhÞ and ðrPhÞ3=2=ðrF D1=2Þ in various experiments

Experiments by rPh ðkg=m2Þ rF ðkg=m
3Þ D (Nm) rF

rPh
ðm�1Þ ðrPhÞ3=2

rF D1=2
(s/m)

Kornecki et al. [6] 1.343 1.226 8:47� 10�1 0.913 1.397

Huang [8] 0.142 1.226 7:29� 10�4 8.634 1.616

Tang et al. [15] 1.108 1.226 3:83� 10�1 1.107 1.50

Souilliez et al. [19] 0.2 1.226 6:15� 10�3 6.31 0.93
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Fig. 3. The flutter boundary of cantilevered flexible plates in axial flow: theoretical predictions and experimental measurements from

various sources. For the present theory, the results shown were obtained with the system parameters: l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0.
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It should be emphasized that Fig. 3 reveals inherent properties of the global stability of cantilevered flexible
plates in axial flow. Both the trend of a single flutter boundary and the relation between different ones
(no matter whether they be theoretical or experimental) are neither distorted by scale factors in the axes used
nor qualitatively changed by other factors influencing the system dynamics (i.e., the length of upstream rigid
segment l0 ¼ L0=L, the material damping coefficient a, and the viscous drag coefficient CD). The actual values
of the scale factors ½rF=ðrPhÞ� and ½ðrPhÞ3=2=ðrF D1=2Þ� for some of the experimental data [6,8,15,19] are listed in
Table 1; the absence of the others [12,13] from this table is due to the lack of published information which
would have enabled calculation of these scale factors. Although the scale factors for L and Uc may not always
be close to unity nor be the same for individual experiments, it is easy to check that they will not qualitatively

change the key properties of the flutter boundaries shown in Fig. 3. Moreover, although the system dynamics
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is also dependent on the values of the other parameters, i.e., l0, a and CD, the choice of values for these
parameters will not cause a qualitative change to the flutter boundary [22].

It should be mentioned that Lemaitre et al. [5] also have recently reported that Uc is insensitive to L for long
plates, in their work on hanging plates in axial flow (i.e., with gravity in the positive X direction of Fig. 1); they
attributed the observed trend to the axial tension caused by the distributed weight of the plate. However, for
all the theoretical analyses and experiments presented in Fig. 3, both the plate and the upstream support are
vertical (i.e., gravity is in the negative Z direction of Fig. 1), and hence gravity needs not be taken into account.

If, instead of URc=m one had plotted URcversus m (refer to Fig. 7 of Ref. [22]), neither the global trend for a
single flutter boundary nor the correlation between different ones as described in the foregoing would be
discernible. Therefore, a discussion of the global properties of a flutter boundary has to be conducted in terms
of dimensional parameters Uc and L in a URc=m versus m plot. The scale factor ½rF=ðrPhÞ� for different systems
is not always the same, and a system with a larger m does not necessarily correspond to a longer plate than
another system with a smaller m. However, for a specific system of which the parameters rP, h and rF are fixed,
m is directly proportional to L. In particular, in light of the flutter boundary predicted by the present theory,
one can consider that a plate is long when mX4, and that it is a short one when mp1.

4. Oscillation characteristics on the flutter boundary

The characteristics of the system along the flutter boundary are studied first. Four points, at m ¼ 0:2 and 0:6
for short plates and m ¼ 4 and 20 for long ones, are selected, and the computed time history, frequency and
vibration mode at the critical point URc for each m are obtained using the present theory; they are shown in
Figs. 4 and 5.

It should be mentioned that the parameters involved in these simulations, including UR, initial conditions,
time step Dt and stop-time tE (listed in Table 2) are not the same for all values of m. First, as URc varies with m,
the value of URc in each case is different. One may notice in Table 2 that the relation between URc and m
exhibits an irregular pattern (see also Fig. 7 in Ref. [22]). In particular, URc ¼ 9:92, 6:71, 10:15 and 8:71,
respectively, for m ¼ 0:2, 0:6, 4 and 20. As mentioned in Section 3, this is not a global trend such as that
observed in the URc=m versus m plot of Fig. 3. Secondly, the time step Dt in each simulation is determined by
the requirement of convergence; it is not necessarily the same for different m. Note the number of discrete point
vortices NW in a fixed length of truncated wake lW is related to Dt by

NW ¼
LW

UDt
¼

lW

URDt
, (12)

where Dt is the dimensional time step and lW is the non-dimensional truncated wake length; lW ¼ 9 is used in
the present study. Finally, as seen in Table 2, different initial conditions and stop times tE are used for
different cases of m (the common part of the initial conditions, not listed in Table 2, is q0

i;ia1 ¼ 0, _q0
i ¼ 0). The

purpose here is to obtain comparable flutter amplitudes maxðjwðx ¼ 1ÞjÞ for all the values of m tested, at a time
instant close to tE , and consequently to ensure that the corresponding wakes have roughly the same strength.
Since each simulation is carried out with the corresponding URc , the time histories (still transient, not quite
steady state) in Fig. 4 have a very small growth rate. Values of maxðjwðx ¼ 1ÞjÞ at a time instant close to tE are
listed in Table 2; it can be seen that they are approximately the same.

It can be seen in Fig. 4 that the non-dimensional frequency f %
¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q
increases with m. In

particular, as listed in Table 2, f %

c ¼ 2:8, 2:8, 5:2 and 5:8, respectively, for m ¼ 0:2, 0:6, 4 and 20.
The instantaneous shapes of the oscillating plates at a series of successive time steps for m ¼ 0:6, 4 and 20 are

shown in Fig. 5; each series roughly constitutes a half cycle of the oscillation. It can be seen in Figs. 5(a–c) that
the plate basically oscillates in a second beam-mode for m ¼ 0:6 (and also for m ¼ 0:2, not shown); the third
beam-mode and higher modes contribute a negligible part to the vibration. However, the third beam-mode
component becomes comparable to that of the second beam-mode when m ¼ 4, and it becomes the dominant
one for m ¼ 20. The local extrema along the oscillating plate are marked with small circles in Fig. 5; it can be
seen that a wave travels downstream for all cases of m. Although it is clear in Fig. 5 that the wave travels with a
higher speed for long plates (for m ¼ 4 and 20) than it does for the short one (m ¼ 0:6), the phase velocity is not
significantly different for m ¼ 4 and 20.
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5. The influence of the wake

Why do theoretical predictions and experimental measurements generally display better agreement for long
plates than they do for short ones? Although, of course, a wake always exists in all experiments, there are
important differences among various theories as to the treatment accorded to the wake behind the plate. In
particular, Huang [8], Watanabe et al. [13] and Argentina and Mahadevan [17] used Theodorsen’s theory [28]
or one of its modified versions, and considered a wake behind the plate along the neutral plane (Y ¼ 0, see
Fig. 1). Yamaguchi et al. [11] adopted the linearly-varying vortex sheet model [23] and Tang et al. [15] used a
vortex lattice model for calculating fluid loads; both included a wake behind the plate along the neutral plane.
Guo and Paı̈doussis [10] and Eloy et al. [20] tried direct solutions of the potential flow problem for the fluid
part of the system and completely neglected the wake. Shelley et al. [18] applied localized excitation theory [29]
without taking the wake into account. Finally, the present theory works with the lumped-vortex model and
considers a wavy wake street. An important conclusion can be reached from this compact literature review:
that the wake must have but a small influence on system stability when the plate is sufficiently long.

In Fig. 6, for m ¼ 0:2, 0:6, 4 and 20, the strength of the discrete point vortices gW in the wake is plotted
against their longitudinal coordinate xW . The time instants for these plots are selected using the same rule as
that for determining t% in Fig. 5: i.e., a time instant close to tE is chosen, such that at that moment the plate tip
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time instant close to tE , such that at this moment the plate tip reaches its maximum negative displacement, which is not necessarily the

same for all values of m; DtR ¼ 0:001 is the non-dimensional time step for recording the plate shapes. The other system parameters used

are: l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0.
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reaches its maximum negative displacement. It can be seen in Fig. 6 that the gW versus xW plot also has a wavy
form. Note that both the xW–gW and the xW–yW waves (as illustrated in Fig. 2) have the same wavelength and
phase. In the current study of the flutter boundary, the vibration amplitude of the plate is always very small
(of the order of 10�5, see Figs. 4 and 5), i.e., maxðjyW jÞ ¼ maxðjwðx ¼ 1ÞjÞ51. Therefore, all wake vortices
may be regarded as lying along the neutral plane ðy ¼ 0Þ when one considers the influence of the wake on the
plate.

Two factors affecting the influence of the wake on the plate are its vortical strength and distribution in
space. The strength for a wake consisting of discrete point vortices (as obtained using the present theory)
should be determined by the number of wake vortices NW in a fixed truncated wake length lW (lW ¼ 9 in
the present study) and the strength of each individual vortex gW . Without considering the distribution and the
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Fig. 6. The instantaneous wake for the chosen values of mass ratio m: (a) the distribution of the wake vortices in space; (b) the FFT

amplitude as a function of the wavenumber 1=l. For each m, the wake street was obtained using the corresponding URc . The other system

parameters are: l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0.

Table 2

Simulation conditions and results for various values of m

m Short plates Long plates

0.2 0.6 4 20

Simulation conditions

URc 9.92 6.71 10.15 8.71

Initial condition q01 ð�10
�5Þ �1.5 �1.5 �5.0 �1.0

Dt 0.001 0.001 0.0001 0.0001

tE 10 10 5 5

Simulation results

maxðjwðx ¼ 1ÞjÞ ð�10�5Þ 1.4 1.6 1.5 1.6

f % 2.8 2.8 5.2 5.8

Dominant mode 2nd 2nd 2nd and 3rd 3rd

L. Tang, M.P. Paı̈doussis / Journal of Sound and Vibration 310 (2008) 512–526520
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Table 3

Equivalent strength of wake vorticity and wake-induced flow velocity at x0 ¼ 0:5

m Short plates Long plates

0.2 0.6 4 20

NW ðlW ¼ 9Þ 907 1341 8867 10333

1=lW 0.28 0.42 0.5 0.7

maxðjgW jÞ � 107 6.51 5.26 0.559 0.351

NW �maxðjgW jÞ � 104 5.90 (100%) 7.05 (119%) 4.96 (84%) 3.63 (62%)

wW ðx0 ¼ 0:5Þ � 105 3.22 (100%) 2.97 (92.9%) 0.65 (20%) 0.53 (16%)
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strength variation of wake vortices in space, one may use NW �maxðjgW jÞ as a rough indicator of the
equivalent strength for a wake having a regular wavy form. The equivalent strengths NW �maxðjgW jÞ

calculated for individual cases of m are listed in Table 3.
Also, the wake-induced flow velocity (the downwash) wW at a point ðx ¼ x0; y ¼ 0Þ on the plate can be

calculated by

wW ðx0Þ ¼
1

2p

XNW

j¼1

gW j

xW j � x0
, (13)

where the distribution of wake vortices in space has been taken into account. The calculated wW ðx0 ¼ 0:5Þ,
also listed in Table 3, can be regarded as an evaluation of the influence of the wake on the plate when
comparing various cases of m.

In Table 3, the calculated values of NW �maxðjgW jÞ and wW ðx0 ¼ 0:5Þ are expressed as a percentage of
those for the reference case of m ¼ 0:2. It can be seen that the equivalent strengths of the wake,
NW �maxðjgW jÞ, for the various cases of m are similar. In contrast, the wake-induced flow velocity,
wW ðx0 ¼ 0:5Þ, decreases significantly as m increases. It is easy to prove that the decrease of wW with increasing
m is due to the variation of wavelength of the wake lW as shown in Fig. 6 and also listed in Table 3 in terms of
the wavenumber 1=lW . For a shorter wavelength lW (i.e., a larger wavenumber 1=lW ), successive effective
wake vortices with alternating positive and negative signs (refer Fig. 2 in Ref. [3]) come closer to each other;
and thus the wake has a smaller overall influence (in terms of wW ) on the plate. Note that lW is related to f %

through

lW ¼
UR

f %
. (14)

Therefore, as m increases, the decrease in lW is actually caused by the increase in the flutter frequency f % of the
plate.

When evaluating the influence of the wake on the plate, one has to consider the plate motion as well.
In Fig. 7, the plate displacement wðxÞ along the plate, the vibration velocity dwðxÞ=dt, the wake-induced flow
velocity wW ðxÞ, as well as the ratio ðdwðxÞ=dtÞ=ðwW ðxÞURÞ are presented for m ¼ 0:2, 0:6, 4 and 20. Note that
the presence of UR in the ratio arises from non-dimensionalization, i.e.,

dW ðX Þ=dt

W W ðX Þ
¼

LdwðxÞ=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPhL4=D

q
dtÞ

UwW ðxÞ
¼

1

UL

ffiffiffiffiffiffiffiffi
D

rPh

s
dwðxÞ=dt

wW ðxÞ
¼

dwðxÞ=dt
wW ðxÞUR

, (15)

where W W ðX Þ is the dimensional wake-induced flow velocity. For each m, the time instant for the data
presented is again selected from a point close to tE , and at this moment the plate tip should reach its negative
maximum displacement, as shown in Fig. 7(a).

It can be seen in Fig. 7(b) that the wW ðxÞ versus x curves are qualitatively similar, and at a fixed point
on the plate the magnitude of wW ðxÞ decreases monotonically as m is increased due to the increase in flutter
frequency f %.
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Fig. 7. The evaluation of the influence of the wake for the chosen values of mass ratio m: (a) the flutter modes; (b) the wake-induced flow

velocities; (c) the vibration velocities of the plates; (d) the normalized vibration velocities of the plates; and (e) the ratios of the vibration

velocities of the plates to the wake-induced flow velocities. The other system parameters are: l0 ¼ 0:01, a ¼ 0:004 and CD ¼ 0.
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The plate vibration velocity dwðxÞ=dt, for all values of m under consideration, is plotted in Fig. 7(c). Note
that dwðxÞ=dt is the instantaneous velocity distribution along the plate, which is a function not only of the
flutter frequency f % but also of the vibration mode. In order to examine the influence of the vibration mode,
the normalized plate vibration velocities, defined by ðdwðxÞ=dtÞ=f %, are plotted in Fig. 7(d). It can be seen that,
because higher-order modes present in the flutter become more important for the systems with larger m, the
overall magnitude of ðdwðxÞ=dtÞ=f % increases with increasing m, although the instantaneous plate shapes wðxÞ

for all cases of m are roughly the same (see Fig. 7(a)).
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Finally, in Fig. 7(e), the plots of ðdwðxÞ=dtÞ=ðwW URÞ are used for a comparison of the influence of the wake
on the plate for the cases of m under consideration. It can be observed that, with increasing m, the overall
magnitude of ðdwðxÞ=dtÞ=ðwW URÞ grows significantly.

In summary, quantitative evaluations of the wake-induced flow velocity wW ðxÞ, the plate vibration velocity
dwðxÞ=dt and the ratio ðdwðxÞ=dtÞ=ðwW ðxÞURÞ, for individual cases of m, in terms of the area enclosed by the
curves shown in Figs. 7(b), (c) and (e) and the x-axis are listed in Table 4. It can be seen thatR 1
0 jðdwðxÞ=dtÞ=ðwW ðxÞURÞjdx ¼ 0:386, 1:13, 2:41 and 6:31 for m ¼ 0:2, 0:6, 4 and 20, respectively. That is, wW

becomes increasingly less important than dwðxÞ=dt as m is increased. Note that this trend is caused not only by
the decrease in

R 1
0 jwW ðxÞjdx but also by the increase in

R 1
0 jdwðxÞ=dtjdx as m is increased; i.e., the wake-

induced velocity on the plate, wW , is diminished, as compared to the transverse velocity of the plate.
Furthermore, although it does not reveal the underlying mechanism, the most direct way for assessing the

influence of the wake on system stability is to find a new critical point U%

Rc
with a modified model excluding the

wake and to compare it with URc obtained with the full model. For each case of m, the critical values URc and
U%

Rc
are listed in Table 5. When m grows from 0:2 to 0:6 and then to 4, it can be seen that the difference

between URc and U%

Rc
decreases. For m ¼ 20, however, jURc �U%

Rc
j ¼ 0:5, which does not follow this

decreasing trend. Nevertheless, when the value of jðURc=mÞ � ðU
%

Rc
=mÞj is evaluated, a sharp decreasing trend

with respect to m can be observed for all values of m under consideration. Therefore, for fixed physical
parameters rP, h, D and rF of the system, one can draw the conclusion that the wake has a diminishing
influence on system stability as the length of the plate is increased. That is, the dimensional critical flow velocity
Uc for long plates is little affected by the wake, whereas this is not true for short plates.

Regarding the large values of jðURc=mÞ � ðU
%

Rc
=mÞj for m ¼ 0:2 and 0:6, as listed in Table 5, one can also

conclude that the wake has an important influence on system stability for short plates, the underlying
mechanism of which may be illustrated using the diagram in Fig. 8. Note that, for a case of small m, the plate
vibrates in the second beam-mode (see the curve wðxÞ for m ¼ 0:2 in Fig. 7(a)), and one can approximately
consider the flexible plate, at a given time instant, as a rigid thin cambered airfoil moving upward with a
velocity dW=dt, as shown in Fig. 8, and also be subjected to a wake-induced velocity W W . The directions of
dW=dt and W W are determined, respectively, in accordance with the signs of dwðxÞ=dt and wW ðxÞ shown in
Fig. 7 for m ¼ 0:2. It can be seen in Fig. 8 that, when W W is equal to or larger than dW=dt (refer to the value
of
R 1
0 jðdwðxÞ=dtÞ=ðwW ðxÞURÞjdx listed in Table 4 for m ¼ 0:2), the neglect of W W will decrease the angle y and
Table 4

An evaluation of influence of the wake on system stability and the underlying mechanism

m Short plates Long plates

0.2 0.6 4 20

R 1
0 jwW ðxÞjdx� 106 9.97 (100%) 9.60 (96%) 5.30 (53%) 3.62 (36%)R 1
0

dwðxÞ

dt

����
����dx� 105

3.37 (100%) 5.98 (177%) 13.5 (399%) 18.4 (545%)

R 1
0

dwðxÞ=dt
wW ðxÞUR

����
����dx

0.39 (100%) 1.13 (292%) 2.41 (624%) 6.31 (1637%)

Table 5

The influence of the wake on the stability of the system with various values of m

m Short plates Long plates

0.2 0.6 4 20

URc 9.92 6.71 10.15 8.71

U%

Rc
5.71 7.04 10.33 8.21

jURc �U%j

Rc
4.21 0.35 0.18 0.50

jðURc=mÞ � ðU
%=mÞj
Rc

21.05 0.58 0.045 0.025
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Table 6

The short plate studied by Kornecki et al. [6]

m URc UR
%%
c jURc �U

%%j
Rc jðURc=mÞ � ðU

%%=mÞj
Rc

0.232 5.93 0.582 5.32 22.93

αeff
WW

α

-dW/dt

dW/dt
U

θ

The plate

Fig. 8. A short plate and the flow conditions.

L. Tang, M.P. Paı̈doussis / Journal of Sound and Vibration 310 (2008) 512–526524
thus increase the effective angle of incidence aeff . It follows that the lift, which would destabilize the plate,
grows. Therefore, a smaller value of the critical flow velocity Uc can be expected, i.e., Uc would be
underestimated. It should be emphasized that this simple theory can only be used for a very short plate
ðm ¼ 0:2Þ. With increasing values of m, the vibration of the plate becomes more complex, and it is not adequate
to represent the vibrating flexible plate with distributed dW ðX Þ=dt (which may not be in phase at different X)
and W W ðX Þ as a rigid airfoil with a single dW=dt and a single W W .

As a supplement to Table 5, a well-deserved mention is made of the work by Kornecki et al. [6] who studied
a system with m ¼ 0:232. In this work, a full model based on Theodorsen’s theory was used for predicting the
critical point (URc as listed in Table 6), as well as a quasi-static model neglecting the motion of the plate for
another critical point (denoted by U%%

Rc
in Table 6). Note that neglecting the motion of the plate, instead of

neglecting the wake (refer to Fig. 8 and the discussion in the foregoing) also significantly changes the value of
the critical point for a short plate.

6. Concluding remarks

It is well known that a challenging difficulty in the problem of stability of a cantilevered flexible plate in
axial flow arises from the finite length of the plate; a wake exists and affects the system dynamics. However,
from a physical point of view, when the length of the plate is sufficiently large so as to approach an infinitely
long plate, the influence of the wake on the system dynamics should diminish and then disappear (recall the
much improved agreement for long plates shown in Fig. 3, between the theoretical predictions of Shelley et al.
[18] and others [8,11,14,17] as well as the present theory). In this paper, we have studied the influence of the
wake on the stability of cantilevered plates in axial flow and the underlying mechanisms.

In order to compare the flutter boundaries predicted/measured by various theories/experiments, the non-
dimensional mass ratio m and reduced flow velocity UR are used as parameters. However, as the parameters m
and UR share some physical elements, a monotonic trend cannot be observed in the URc versus m plot. To
resolve this problem, all flutter boundaries are presented in a URc=m versus m plot, in which a clear monotonic
trend in the relation between the dimensional parameters Uc and L is discovered, supposing that the
parameters rP, h, D and rF remain fixed. To this end, using URc=m as the ordinate in Fig. 3 does not just
simply represent the theoretical/experimental data in a different way (refer to Fig. 9 in Ref. [14], which has
been extensively used in other publications); it reveals an intrinsic property of the system, with direct physical
meaning.

Taking advantage of the clear trend in the URc=m versus m plot, a global assessment of the flutter boundaries
by various theories and experiments can be made: the various theories (no matter whether they consider a
wake or not) and experiments (where a wake always exists) agree with one another very well for long plates.
However, for short plates, various theoretical predictions and experimental measurements exhibit quite large
discrepancies. These observations immediately lead to the conclusion that the wake has less influence on
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system stability for long plates than it does for short ones. As mentioned in the precursor paper [22], all
influencing factors including the length of leading rigid segment, the level of material damping, the aspect ratio
(for three-dimensional considerations) and so on, have less effect on system stability for long plates than they
do for short ones. However, in the present paper, we have focussed on the influence of the wake and its effect
on flutter.

It should be emphasized that the only conclusion that we have been able to reach with confidence is
deliberately limited to the different levels of influence of the wake on stability, respectively for long and short
plates; whether the existence of the wake per se would stabilize or destabilize the system is not discussed in the
present paper. Moreover, although quantitative analysis has frequently been used, the assessment of the
importance of the wake, regarding the level of its influence on system stability, is still qualitative.

To evaluate the influence of a dynamic wake is not an easy task. First, an accurate model of the wake and
the unsteady flow conditions surrounding an oscillating deformable solid body requires sophisticated and
refined knowledge, to a level not yet attainable—to the authors’ knowledge. Second, influences of various
parameters in such a complex system as a cantilevered plate in axial flow are normally interwoven, and they do
not necessarily have a monotonic/uniform pattern in terms of a specific parameter; this fact would make an
assessment of the influence of the wake even more complicated. However, the observed overall trend of the
flutter boundary in Fig. 3 is so starkly clear that a relatively simple wake model and the associated analytical
approach used in the current paper can and do reveal the underlying mechanism of the influence of the wake,
with a fairly high degree of confidence.

Through a carefully arranged study on the dynamics of the system along the flutter boundary, it is found
that longer plates have higher critical frequencies, which lead to shorter wavelengths in the wake and
consequently to smaller wake-induced flow velocities (downwash) on the plate. On the other hand, more
higher-order mode components are found in the plate vibration at the critical point for longer plates, which, in
conjunction with the higher critical frequencies, result in higher overall plate vibration velocities. Under the
combined action of these two factors, the ratio of plate vibration velocity to wake-induced flow velocity
becomes higher for longer plates; therefore, it can be concluded that for longer plates the wake has a smaller
influence.
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